

Computational Protocols for Viscosity Reduction in CO₂ Capture Organic Solvents

VASSILIKI-ALEXANDRA GLEZAKOU

Pacific Northwest National Laboratory CO₂ Capture Technology Meeting August 8-12 2016 - Pittsburgh

Acknowledgments

- Funding: US Department of Energy Office of Fossil Energy Andrew Aurelio (FWP-65872)
- US Department of Energy, National Energy Technology Laboratory
 - Lynn Brickett
 - John Litynski
- The PNNL Team
 - David Cantu
 - Roger Rousseau
 - David Heldebrant
 - Phillip Koech
 - Deepika Malhotra
- The GE Global Research Team
 - Robert Perry
 - Tiffany Westendorf
 - Benjamin Wood
- Collaborators at FLUOR, LLNL, EPRI
- Computational Resources NERSC, PIC, MIT

- Andy Zwoster
- Richard Zheng
- Charlie Freeman
- Tom Brouns
- Mark Bearden

Program goals and objectives

- Enable solvent design for advancement up DOE's TRL scale to enable large-scale testing and deployment by year 2030
- Develop tools and solvent design methodologies for viscosity prediction/ reduction across all transformational solvent platforms
 - Understand the underlying molecular descriptors that control viscosity
 - Develop viscosity reduced order model that can predict key solvent physical and thermodynamic properties
 - Given a library of compounds, down-select to a small number that can reduce viscosity of current formulations by >400 cP or more
- Apply the developed viscosity model and molecular design principles to other solvents in DOE's post-combustion solvent portfolio
- Budget-permitting, conduct a bench-scale demonstration of the most advanced solvent that includes extended testing with and without water.
 - Use bench-scale testing data to make energy and LCOE predictions for a fullscale system, using Aspen Plus[™] to model the system

The challenges of solvent development

- The viscosity of the medium changes with CO₂ loading
- Different R groups generate a big number of compounds to be screened

Example library of CO₂BOLs – Round 1

HO

N (−) n

HO

NF n

HO.

HO.

Ν

) n

n

n

Nt

N.t.

) n

HO.

HO

N (−) n

HO

∠R

`N~R'

R,

N^{≁)n}

`N^{~R'}

∠R

) n

_N-R'

~10²-10³ molecules that need to be

HO

HO.

۶R

n= 2, 3, 4, 5 R= Et, Pr, iPr, Bu, iBu

screened quickly and reliably and scaled up

Initial molecular design metrics

What we need (specific for each solvent class):

- Guanidine-based CO₂BOLs
 - High basicity needed for >90%
 CO₂ capture
 - Zwitterionic form has low volatility
- Cyclic base core to prevent hydrolysis

Initial design concepts:

- Optimize cation-anion interactions in the Zwitterion
- Steric effects
- Fine tuned molecular electronics
- Effect of hetero-atoms

X and X_1 = F, Cl, CF₃, (EWG) or OMe, CH₂NMe₂, (EDG) and R₂=R₃=Me, CF₃, CF₃CF₂⁻, OMe with n=1, 2, 3

Silane-Based CO_2BOLs

Scientific and technology approach

Molecular modeling tools

Proudly Operated by Baffelle Since 1965

- DFT-based electronic structure for molecular properties (~10²⁻10³ atoms)
 - Accurate description of molecular properties
 - Atomic charges needed for classical potential
 - Reaction energetics: H-bonding, CO₂ absoption energy
- Ab initio Molecular Dynamics and accelerated free energy sampling methods (metadynamics, Blue moon,) ~10³ atoms
 - Reactivity including temperature effects and dynamic behavior, free energy estimates
- Classical Molecular Dynamics (MD) (~10⁴-10⁵ atoms)
 - Accurate description of molecular liquid structure, with potentials derived from electronic structure (Universal OPLS with *ab initio* charges)
 - Obtain number and type of relevant intermolecular contacts
 - Transport properties: diffusion and viscosity
- Codes, Software:
 - CP2K (<u>www.cp2k.org</u>), NWChem (<u>www.nwchem.org</u>), Gaussian09 (<u>http://www.gaussian.com/g_prod/g09.htm</u>)
 - Viscosity can be directly computed from long simulations (1µs), Software: GROMACS (<u>www.gromacs.org</u>)
- Desired outcome is a reduced model
 - Shift through many candidates in short time (few days)

IPADM-2-BOL

CO₂-loaded IPADM-2-BOL

CO₂BOLs – Initial computation targets

- Initial and new computational targets
 - **3-D steric interactions**
 - Reduced intermolecular interactions
- Simulate pure liquids and mixtures at 15%, 25%, and 50%, determine viscosity from analysis of trajectories
- Evaluate inter- vs intra-molecular hydrogen bonding effects on viscosity

Control Molecules & Complexes

Initial trial Molecules & Complexes

-Preserves weights and functional groups of Current BOL (2nd amine and alcohol-i.e. similar CO₂ adsorption energy) -Partially restrict mobility of aliphatic side chain w. 2nd ring.

> -May favor internal H-Bond. -May be a more readily synthesizable target.

-Preserves weights and functional groups of Current BOL (2nd amine and alcohol, i.e. similar CO₂ adsorption energy)

-Restrict mobility of aliphatic side chain w. 2nd ring.

-Hinders internal H-Bond. August 11, 2016

Validation of molecular model¹

Proudly Operated by Battelle Since 1965

System	Experimental	Calculated viscosities
(IPADM-2-BOL)	values (cP)	from MD (cP)
Pure (0% CO ₂)	8	15
15% mol CO ₂ loading	36	35
25% mol CO ₂ loading	110	150
50% mol CO ₂ loading	~3000 ²	>1000

¹DJH et al. 2014, Energy Procedia 63, 8144-8152, in press. ²ASPEN Plus projection August 11, 2016 | 10

Molecular level interactions: Hydrogen bond

Molecular modifications that have deliberate effect on viscosity

- Ether groups close to the CO₂ binding site increase the % of zwitterionic molecules with internal hydrogen bonds in Koechanol.
- MD predicts a 30% reduction in the viscosity of ether Koechanol compared to Koechanol, both at 25% mol CO₂ loading.
 - Koechanol (34% internal H-bond and 10% stacking) **150 cP**

Towards a reduced model: thermodynamics of CO₂ binding

- CO₂ binding free energy, optimally ca -15 to -20 kJ/mol
- ► Red line is binding free energy from blue moon dynamics, blue line is ∆E from AIMD
- Confirmation of the equilibrium from NMR data
- 1. D. C. Cantu et al. J. Phys. Chem. Lett., 2016, 7 (9), pp 1646–1652
- 2. Mathias PM et al. (2015) ChemSusChem, 8, 3617-3625.

Viscosity dependency on loading

Exponential dependency on loading.

Dependence confirmed by MD and experiment

Reduced Model: Explicit H-Bonding

1200

 $R^2 = 0.96$

Viscosities (cP) from classical MD 00 00 00 00 00 00 00 00 0 0.2 0.4 0.8 0.6 0 1 **P**_{int} r_{он} ON

- If $\mathbf{r}_{0-H} > 2.0$ Å, then $\mathbf{P}_{int} = 0.001$
- If r_{o-H} < 2.0 Å, then</p>
- Difference between electrostatic repulsion (NO) and attraction (OH)

D. C. Cantu et al. submitted

Structure/Viscosity Correlations

1.0 R² = 0.82 0.8 0.6 P_{int,MD} 0.4 0.2 0.0 0.2 0 0.4 0.6 0.8 1 $\mathbf{P}_{\text{int},\mathbf{X}}$ 1200 1200 R² = 0.97 Β Viscosities (cP) from classical MD Α Viscosities (cP) from classical MD 1000 1000 800 800 600 600 400 400 200 200 0 0 200 400 600 800 1000 1200 0 600 0 200 400

Viscosities (cP) from Reduced Model with P_{int.MD}

Pacific Northwest NATIONAL LABORATORY

- Proudly Operated by Battelle Since 1965
- The reduced model recovers ~80% of the H-bonding determined by MD
- Over 90% of correlation between viscosity and H-bonding by either MD (A), or RM (B)

 $R^2 = 0.91$

Viscosities (cP) from Reduced Model with P_{int,X} August 11, 2016

1000

1200

800

Molecules for computational screening

200 compounds screened computationally!

1. Based on the Koechanol scaffold:

- First cycle: 200 compounds screened by molecular simulation and reduced models
 - Predicted viscosities
 - CO₂ binding energy
- Approximately 25 compounds by full MD of liquid state
- Down-selected to 5 best candidates for further investigation
 - Full MD to validate/tune reduced model
 - Synthetic targets

Comp ound	R1	R2	R3	R4	R5
KOL	CH₃	CH₃	CH₃	Н	Н

Blanks = CH₃ in R1-R3, H in R4-5, for clarity

Ether-only Variants					
			CH ₂ OC		
AKL		CH ₂ OCH ₃	H ₃		
BKL				CH ₂ OCH ₃	CH ₂ OCH ₃
CKL	CH ₂ OCH ₃				
EKL		CH_2 -O- CH_3			
IKL				CH ₂ OCH ₃	
JKL	CH ₂ OCH ₃			CH ₂ OCH ₃	CH ₂ OCH ₃
LKL				OCH ₃	OCH ₃
MKL	OCH ₃				
OKL				OCH ₃	
PKL	OCH ₃			OCH ₃	OCH ₃
		Fluoro-on	ly Varian	ts	
DKL		CH ₂ CF ₃	CH_2CF_3		
FKL		CH ₂ CF ₃			
GKL	CH ₂ CF ₃				
QKL				CH ₂ CF ₃	CH ₂ CF ₃
RKL				CH ₂ CF ₃	
SKL	CH ₂ CF ₃			CH ₂ CF ₃	CH ₂ CF ₃
UKL		CF ₃	CF ₃		
VKL		CF ₃			

Another 100 compounds screened in cycle-2

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Pacific Northwest NATIONAL LABORATORY

Best five candidates not exp. verified yet Proudly Operated by Battelle Since 1965

Viscosity of original IPADM-2-BOL at 25% ~150 cP $\Delta\Delta E$ computed relative to IPADM-2-BOL

Novel insight from MD: Neutral capture

Dynamic equilibrium between Zwitterion and its acid equivalent

D. C. Cantu et al. J. Phys. Chem. Lett., 2016, 7 (9), pp 1646–1652

Theoretical suggestion: Non-ionic CO₂ capture solvent systems

Proudly Operated by Battelle Since 1965

- We determined the acid-base equilibrium of several model CO₂BOL systems.
 - We found that we can modify the electronic structure of the molecule to shift the equilibrium towards a neutral CO₂ binding species.
 - Preliminary data of viscosities from classical MD simulations indicate significant improvement

25% mol CO ₂ loading	IPATFMM-2-BOL	EODM-2-BOL
	Viscosity (cP)	Viscosity (cP)
All zwitterion	328.5	45.5
	+415.4 -117.7	+8.0 -5.9
1:1 acid:zwitterion	214.2	17.9
	+45.0 - 31.7	+1.9 -1.6
All acid	137.9	14.2
	+21.3 -16.3	+0.7 -0.6

D. C. Cantu et al. J. Phys. Chem. Lett., 2016, 7 (9), pp 1646–1652

Neutral capture is more impactful at higher loadings

The same principles apply to different solvents: Class 2 GE solvents

Proudly Operated by Battelle Since 1965

- Model validation
- GAP class of solvents
- CO₂ loadings (mol %): 0, 25, 50
- Densities at 40, 80 and 120 °C
- Heterogeneous solvent: different phases

Zwitterion

System	Density at 40 C	Density at 80 C	Density at 120 C
GAP-0/TEG 0% CO2	975.5 kg/m ³	932.7 kg/m ³	884.6 kg/m ³ exp: 844.2 (5% error)
GAP-0/TEG 25% CO2	992.5 kg/m ³	952.3 kg/m ³	906.6 kg/m ³
GAP-0/TEG 50% CO2	1008.7 kg/m ³	970.6 kg/m ³	927.4 kg/m ³
GAP-1/TEG 0% CO2	969.0 kg/m³ exp: 1000.1 (4% error)	917.9 kg/m ³ exp: 982.7 (7% error)	869.5 kg/m ³ exp: 859.8 (1% error)
GAP-1/TEG 25% CO2	983.7 kg/m ³	939.2 kg/m ³	892.7 kg/m ³
GAP-1/TEG 50% CO2	1003.6 kg/m ³	960.8 kg/m ³	915.8 kg/m ³

GAP solvent structure

- CO₂ loadings (mol %): 0, 25, 50
- Preliminary viscosities at 40 °C
- Also starting temperature dependence runs

System at 40 C	0% mol CO2	25% mol CO2	50% mol CO2	
GAP-0/TEG	26 +5/-4 cP	65 +14/-10 cP	154 +35/-24 cP	
GAP-1/TEG	9 +1/-1 cP (exp: ~19 cP)	51 +23/-11 cP (exp: ~ 90 cP)	*	*: in pro

Heterogeneous solvent structure

CO₂-GAP-0: red GAP0: blue TEG: silver

GAP-0/TEG 0% CO₂

GAP-0/TEG 25% CO₂

GAP-0/TEG 50% CO₂

As in lonic Liquids, H-bonds between RNH₂⁺---OOCN are present in the extended liquid structure Pacific Northwest National Laboratory Pacific Northwest National Laboratory Prody Operated by Ballelle Since 1965

- ► GAP-0 in TEG (40% wt)
- CO₂ loadings (mol %): 0, 25, 50
- Because CO₂-loaded molecules cluster, they form strong H bonds (RNH₂⁺ to NCOO⁻) within the molecule, and with other molecules

Screen 50 compounds for acid/base equilibrium

- Screen 50 compounds for CO_2 -binding energy and acid/base equilibrium
- Known and new compounds
- Acid/base properties of 14 compounds still running or being double checked
 - Preliminary data presented here

Compound	Structure	Acid/Base Eq ΔE(A-Z) in kJ/mol Keq=[A]/[Z] at 40 °C	CO ₂ Binding Within 25 kJ/mol of the CO ₂ binding energy of GAP-0 or GAP-1
----------	-----------	---	--

GAP-Dytek	$H_2N \xrightarrow{Me Me}_{\substack{I \\ H_2N \\ H \\ H \\ H \\ H \\ Me Me}} Me Me Me Me$	-4.6 ~5/1	Yes
GAP-Et	Et Ne Me H Si O Si Me Me	+41.5 all zwitterionic	Yes
GAP-Ib	Me Me N H H Me Me	-8.2 ~23/1	Yes

Design principles for neutral capture apply in new solvent class (PNNL, patent pending) Pacific Northwest

NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Equilibrium strongly shifted towards the neutral

Three different classes of compounds, a common behavior

Class 3: PNNL new system

Class 3: PNNL new system

Summary

- Molecular simulations were used to identify the critical structure property factors that affect viscosity in three different classes of CO₂ capture solvents:
 - Class 1, PNNL CO2BOLs
 - Class 2, GE GAP solvents
 - Class 3 PNNL new single component solvents
- A reduced order model was constructed that can be used for quick and reliable screening
 - Can be adjusted to fit other classes
- Novel insights pointing at neutral capture have the potential of drastic viscosity reductions in all classes of solvents

THANK YOU FOR YOUR ATTENTION!